Singh D, Slik FJW, Jeon YS, Tomlinson KW, Yang X-D, Wang J, Porazinska DL, Adams JM. Conversion of Asian tropical forests to monoculture rubber plantation reduces small metazoan α-diversity, and overall diversity. Scientific Reports. DOI: 10.1038/s41598-019-42333-4
Abstract: Tropical rainforests play important roles in carbon sequestration and are hot spots for biodiversity. Tropical forests are being replaced by rubber (Hevea brasiliensis) plantations, causing widespread concern of a crash in biodiversity. Such changes in aboveground vegetation might have stronger impacts on belowground biodiversity. We studied tropical rainforest fragments and derived rubber plantations at a network of sites in Xishuangbanna, China, hypothesizing a major decrease in diversity with conversion to plantations. We used metabarcoding of the 18S rRNA gene and recovered 2313 OTUs, with a total of 449 OTUs shared between the two land-use types. The most abundant phyla detected were Annelida (66.4% reads) followed by arthropods (15.5% reads) and nematodes (8.9% reads). Of these, only annelids were signifcantly more abundant in rubber plantation. Taken together, α- and β-diversity were signifcantly higher in forest than rubber plantation. Soil pH and spatial distance explained a signifcant portion of the variability in phylogenetic community structure for both land-use types. Community assembly was primarily infuenced by stochastic processes. Overall it appears that forest replacement by rubber plantation results in an overall loss and extensive replacement of soil micro- and mesofaunal biodiversity, which should be regarded as an additional aspect of the impact of forest conversion.